Aggregation of nitroaniline in tetrahydrofuran through intriguing H-bond formation by sodium borohydride.

نویسندگان

  • Mainak Ganguly
  • Chanchal Mondal
  • Anjali Pal
  • Saied Md Pratik
  • Jaya Pal
  • Tarasankar Pal
چکیده

The participation of sodium borohydride (NaBH4) in hydrogen bonding interactions and transient anion radical formation has been proved. Thus, the properties of NaBH4 are extended beyond the purview of its normal reducing capability and nucleophilic property. It is reported that ortho- and para-nitroanilines (NAs) form stable aggregates only in tetrahydrofuran (THF) in the presence of NaBH4 and unprecedented orange/red colorations are observed. The same recipe with nitrobenzene instead of nitroanilines (NAs) in the presence of NaBH4 evolves a transient rose red solution due to the formation of a highly fluorescent anion radical. Spectroscopic studies (UV-vis, fluorescence, RLS, Raman, NMR etc.) as well as theoretical calculations supplement the J-aggregate formation of NAs due to extensive hydrogen bonding. This is the first report where BH4(-) in THF has been shown to support such an aggregation process through H-bonding. It is further confirmed that stable intermolecular hydrogen bond-induced aggregation requires a geometrical match in both the nitro- and amino-functionalities attached to the phenyl ring with proper geometry. On the contrary, meta-nitroaniline remains as the odd man out and does not take part in such aggregation. Surprisingly, Au nanoparticles dismantle the J-aggregates of NA in THF. Explicit hydrogen bond formation in NA has been confirmed experimentally considering its promising applications in different fields including non-linear optics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium borohydride stabilizes very active gold nanoparticle catalysts.

Long-term stable 3 nm gold nanoparticles are prepared by a simple reaction between HAuCl4 and sodium borohydride in water under ambient conditions which very efficiently catalyze 4-nitrophenol reduction to 4-nitroaniline.

متن کامل

Reductive Dehalogenation of a-Haloketones by Sodium Borohydride and Tin(II) Chloride in Tetrahydrofuran

The dehalogenation of a-haloketones and a-halocarbonyl compounds is an inevitable proce­ dure for the organic synthesis and these reductive dehalogenations have been often effected in organic syntheses. There have been various procedures for the purpose and these are obtained by zinc and acetic acid [1], sodium dithionite [2], titanium(III) chloride [3], organotin hydride [4], sodium hydrogen t...

متن کامل

Hydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst

The hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of H+ to NaBH4. The sulfonated porous carbon (SPC) is used as a source of hydrogen ion and catalyst. It is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of NaBH4 to generate hydrogen gas at room temperature in comparison to Amberlyst-15 and Nafion-NR50. The ki...

متن کامل

Hydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst

The hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of H+ to NaBH4. The sulfonated porous carbon (SPC) is used as a source of hydrogen ion and catalyst. It is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of NaBH4 to generate hydrogen gas at room temperature in comparison to Amberlyst-15 and Nafion-NR50. The ki...

متن کامل

Synthesis of Iron Oxide Nanoparticles using Borohydride Reduction

Iron oxide (Fe2O3) nanoparticles were synthesized by a simple approach using sodium borohydride (NaBH4) and Iron chloride hexahydrate (FeCl3.6H2O). Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS). XRD pattern showed that the iron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 25  شماره 

صفحات  -

تاریخ انتشار 2014